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1 Introduction

Inductive Logic Programming (ILP) is a scienti�c discipline at the intersection of
machine learning and logic programming. The term was introduced by Stephen Mug-
gleton [Muggleton and King, 1991, Muggleton, 1992]. ILP strives to explain a set of
observations O by a theory H and the background knowledge B. O, H and B are
speci�ed using a more or less restricted subset of First Order Logic (FOL).
ILP inherits its choice of FOL from logic programming. Its advocates claim that

FOL is expressive and intuitive. It is expressive, since very complex concepts including
variables can be described [Dantsin et al., 2001]. Additionally, FOL rules are said to
be intuitive because their semantics easily map to natural language sentences.
As inherited from its machine learning ancestry and in contrast to for example

deductive reasoning, in ILP the theory H is inferred from background knowledge B
and observations O by induction and is therefore not necessarily correct. In fact,
there may be in�nitely many possible H. An ILP learner therefore has to introduce a
bias such as Occam's Razor [Blumer et al., 1987] or Plotkin's Relative Least General
Generalization [Plotkin and of Edinburgh, 1971] when searching for and deciding on a
theory H.
A �good� theory in ILP must be carefully chosen to balance between how much of the

data is explained (coverage) and how complicated its description is (simplicity). The
rationale here is that simpler explanations tend to have better generalization properties
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and are therefore better �t for prediction purposes. However, for non-trivial datasets
there is no obvious answer as to where to draw this line.
It is crucial to notice that the tradeo� between coverage and simplicity is not a

purely technical matter. It also a�ects the intuitivity of the generated rules. A com-
plicated theory has more and longer rules, which become increasingly hard to interpret,
irrespective of the general intuitivity of FOL rules. Furthermore, complex datasets call
for complex and possibly di�cult to understand theories which are therefore hardly
avoidable.
In this work, we argue that a FOL descriptions of a theory is not �by de�nition�

intuitive and can sometimes better be understood using visual aids. The argument
is not only valid to generated theories, however. The background knowledge B and
the observations O are also speci�ed in FOL and can, through their mere amount,
defy human interpretation. In machine learning the choice of the correct algorithm
and parameters depends heavily on the understanding of the data, and ILP may be
no exception. In this work we consequently propose a visualization method for ILP
datasets which provides such necessary insights. Our method is based on the idea to
provide a structured and easily accessible visualization of what is true in which parts
of the dataset, as discovered by ILP search algorithms.

2 Searching the Relational Lattice

The procedure searching for the theory H is at the heart of ILP. Since the space of
possible FOL formulas is intractably large, one typically proceeds as follows. First, the
search space is restricted by de�ning a language bias based on the available descriptions
in the observations O and the background B. Second, an ordering, typically based on
θ-subsumption is de�ned on possible theories [Dzeroski, 2007]. This ordering could be
an ordering from general to speci�c or from speci�c to general and need not be strict
nor ; it therefore forms a so-called lattice. Finally, the lattice is searched for good FiXme: strikt und

???theories. As the branching factor is very large, heuristic or greedy search strategies
are typically employed (ibd.).
We would like to utilize the knowledge discovered throughout the search process for

the visualization of a dataset. A canonical choice would be to visualize the searched
lattice itself. As we will point out in the following, this is not the best choice.
Firstly, although the notion of the lattice is intuitive, the lattice searched for a real

dataset can not easily be visualized in a straight-forward way. As an example, consider
the level in the lattice consisting only of all known atoms. The next more speci�c level
in the lattice is the level consisting of all pairwise conjunctions of all atoms. Even
setting aside the combinatorial explosion, we need to impose more structure onto the
space of queries.
Secondly, the lattice search is determined by both, syntax and data. The syntactical

relations between the theories upon which the ordering is de�ned are used to generate
candidate theories, while their relation to the actual dataset, such as the coverage
of the theory, is used for the heuristic. This interaction is at the core of ILP. The
syntactical structure and the structure with respect to the data have very di�erent
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properties. For example, from the syntactical point of view it is certain that more
speci�c theories will cover equal or less of the data than the general ones from which
they are derived. Little can be said about theories for which the generality relation is
not de�ned. In an actual dataset, however, we observe that very di�erent theories can
have a very similar coverage, i.e. they explain the same subset of the data. They need
not be similar and a ordering relation between them need not be de�ned.
Thirdly, there may be many paths through the lattice which arrive at a selected

theory. For trivial example, consider the theory

p(a) ∧ p(b) ∧ p(c).

It could be generated by either combining

(1) p(a) ∧ p(b) and p(c) or (2) p(a) and p(b) ∧ p(c)

However, for e�ciency reasons, only one path will be pursued. Thus, even queries
which are very similar with respect to the data and similar syntactically can be arrived
by very di�erent means.
To summarize, although the syntax-based lattice is crucial for the generation of

theories, it has the drawbacks of being data-agnostic and redundant.
We propose instead to focus on the relation of the searched theories with the data.

As we will see, among new insights this relation also re�ects some important properties
of the lattice.

3 Co-Occurrence Embedding for Relational Data

Machine Learning often deals with complex objects described by a possibly large set of
features. Assuming that there is some structure in the data, it may be worth looking
at a low-dimensional manifold within the high-dimensional data. Firstly, such a low-
dimensional representation lacks irrelevant dimensions which pose a problem for many
machine learning algorithms. Secondly, by choosing a favorable projection, interesting
properties of the data can be emphasized. Finally, the low-dimensional representation
can be optimized to respect the intrinsic structure of the data and can therefore be
used to visualize the high-dimensional space.
Numerous unsupervised (PCA, . . . ) and supervised (. . . ) dimensionality reduction

algorithms have been proposed for this setting [Fodor, 2002]. However, often only
similarities between the objects can be measured. Multidimensional Scaling (MDS,
Cox and Cox [2001]), Locally Linear Embedding [Roweis and Saul, 2000]) and IsoMap
[Tenenbaum et al., 2000] were introduced to embed objects in a n-dimensional space
based on pairwise distances only.
A problem occurs, however, if the objects are of di�erent types. Then it could

be that they either cannot naturally be embedded in a common high-dimensional
feature space in the �rst place or that the similarity relation between some of them
is not de�ned. Recently, embedding techniques [Globerson et al., 2007, Iwata et al.,
2007] have been developed for this setting. They derive their similarity measure from
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statistics extracted from the data, such as joint or conditional probabilities of objects
co-occurring. The information on how similarity is measured is then further exploited
by deriving a gradient which can be used to guide a gradient descend search towards
a locally optimal embedding.
For our purposes we will focus on the Euclidean Embedding of Co-Occurrence Data

introduced by Globerson et al. [2007]. The authors suggest to place objects which often
occur together near to each other, while objects which do not occur together are as-
signed positions far from each other. The embedding is therefore based on the empirical
estimate of the joint probability distribution p(x, y) of two random variables X and Y .
The authors derive a least squares gradient descend algorithm which optimizes random
initial positions of objects representing the values of X and Y such that their relations
in space respect the empirical co-occurrence measure. Additionally, the authors intro-
duce extensions to add further embedding constraints, such as co-occurrence-statistics
within a random variable or embedding based on the co-occurrence statistics of more
than two variables.
The co-occurrence statistics used in Globerson et al. [2007] are particularly inter-

esting from the ILP perspective. An ILP learner is ultimately guided towards the
induced theory by the frequencies of queries in the data. Instead of just focusing on
the absolute number of examples covered, we can further determine which objects in
our observations co-occur with which queries. The discovered co-occurrence statistics
can be used to embed observations and queries in a common space.
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